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Abstract

Slip flow in rectangular microchannels heated at constant and uniform wall temperature (H1 boundary condition) is studied. The study is
extended to the eight possible thermal versions that are formed of different combinations of heated and adiabatic walls. Integral transform method
is applied to derive the velocity and temperature distributions and thus, the average Nusselt number for all the eight thermal versions. It is found
that, for microchannels with perfect accommodation for velocity and temperature, the rarefaction has a decreasing effect on heat transfer for all
the eight thermal versions. The results of the paper for the special case of non-slip flow agree exactly with the results found for macrochannels in
literature.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Slip flow occurs if the flow pressure is very low or the char-
acteristic size of the flow system is small. Continuum physics
is no longer valid if the characteristic size of the flow system is
comparable to the molecular mean free path. In non-slip flow,
as a requirement of continuum physics, the flow velocity is zero
at fluid-solid interface and the fluid temperature at the vicinity
of solid walls is equal to that of the solid walls. In the pres-
ence of slip flow, the flow velocity at the solid walls is nonzero
and there is a temperature jump (a finite difference between the
temperatures of solid wall and the fluid at the vicinity of solid
wall). Nonzero flow velocity and temperature jump at the solid
walls are major hydrodynamic and thermal effects that should
be taken into account in the slip flow solutions.

Slip flow solutions in microchannels may be investigated
for two cases; when the walls of the microchannel are heated
at constant and uniform temperature (H1 boundary condition)
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and; when the walls of the microchannel are heated at constant
and uniform heat flux (H2 boundary condition). In literature,
each of these cases is divided into eight sub versions that are
formed of different combinations of heated and adiabatic walls.

Morini [1] and Spiga and Morini [2] have solved the flow
in macrochannels for all the eight thermal versions under H1
and H2 boundary conditions, respectively. Tunc and Bayazi-
toglu [3] have solved the slip flow in microchannels under H2
boundary condition for the specific case when all the walls
of microchannel are heated at constant and uniform heat flux.
They determined the Nusselt number for various rarefaction
intensities and microchannel aspect ratios, and found that rar-
efaction has a decreasing effect on the heat transfer. Ghodoossi
and Egrican [4] solved the slip flow in microchannels under H1
boundary condition for the specific case when all the walls of
microchannel are heated at constant and uniform temperature.
Similar heat transfer behaviors are reported as those in the work
of Tunc and Bayazitoglu [3].

In this paper, the slip flow in microchannels under H1 bound-
ary condition is studied for all the eight thermal versions. Tem-
perature distribution and Nusselt number for all of the eight
thermal versions are determined. The results for the special case
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Nomenclature

a long side of microchannel . . . . . . . . . . . . . . . . . . . . m
An constant defined by Eq. (25)
b short side of microchannel . . . . . . . . . . . . . . . . . . . m
b1,n, b2,n, b3,n constants defined by Eqs. (30)–(32)
Bn constant defined by Eq. (33)
ci,j constant coefficients in Eqs. (93)–(100)
cP specific heat . . . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

C1n · · ·C4n constants defined by Eqs. (86)–(89)
C3mn,C4mn constants defined by Eqs. (90) and (91)
d1 · · ·d12 constants equal to 1 or 0
Dh hydraulic diameter . . . . . . . . . . . . . . . . . . . . . . . . . . m
h convection heat transfer coefficient . . W m−2 K−1

Imn constant defined by Eq. (92)
k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

K Kernel
Kn Knudsen number
Lh heated perimeter of microchannel . . . . . . . . . . . . . m
L̂h nondimensional heated perimeter of microchannel
Nu Nusselt number
p fluid pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
P normalized pressure gradient
Pr Prandtl number
q ′ thermal power per unit length of

microchannel . . . . . . . . . . . . . . . . . . . . . . . . . . W m−1

R specific heat ratio
S1, S2, S3, S4 constants introduced for simplicity defined by

Eqs. (41)–(44)
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K

�
T nondimensional temperature
�
T aux auxiliary function
u fluid velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

�
u nondimensional fluid velocity
v dependent variable defined by Eq. (12)
v̄ transformed dependent variable defined by Eq. (19)
x, y, z nondimensional coordinates

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . m2 s−1

γ aspect ratio
λn eigenvalues for the energy equation
λmfp molecular mean free path . . . . . . . . . . . . . . . . . . . . m
μ dynamic viscosity . . . . . . . . . . . . . . . . . . kg m−1 s−1

μn eigenvalues for the momentum equation
ρ density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

θ dependent variable defined by Eqs. (65) and (66)
θ̄ transformed dependent variable defined by

Eqs. (78) and (80)
ξ, η, ζ coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Subscripts

b bulk property
m mean value
n index
s fluid property near the wall
w wall value
0 inlet property
of zero rarefaction (solution for macrochannel) agree exactly
with the results of Morini [1] who solved the macrochannel flow
for the same eight thermal versions. One of the eight thermal
versions, microchannel with four heated walls, is solved by Yu
and Ameel [5] for thermally developing flow at slip condition,
the result of which is given graphically in the form of both local
and fully developed mean Nusselt numbers. The fully devel-
oped Nusselt numbers found for the mentioned thermal version
agree with those of Yu and Ameel [5].

2. Problem statement

The problem under consideration is a hydrodynamically and
thermally developed steady flow in the rectangular microchan-
nel shown in Fig. 1. It is supposed that the dimensions of
the microchannel are comparable to the molecular mean free
path. According to the explanations above, a slip flow will oc-
cur in the microchannel. That is, a nonzero flow velocity and
a temperature jump will occur at the walls of microchannel.
The properties of such a slip flow are quantified by the Knud-
sen number Kn, which is defined as the ratio of the molecular
mean free path to the characteristic length of microchannel. Ac-
cording to Beskok and Karniadakis [6], non-slip flow (flow in
macrochannels) occurs if the Knudsen number is lower than
0.001 and, slip flow (flow in microchannels) occurs if the Knud-
Fig. 1. The geometry of microchannel.

sen number ranges from 0.001 to 0.1. The range of interest in
this paper for Knudsen number is from 0.001 to 0.1.

If the problem under consideration was a non-slip flow, the
temperature of the flow near the wall, Ts , would be equal to
the wall temperature, Tw , and the velocity of the flow near the
wall, us , would be equal to zero. Since the problem under con-
sideration is a slip flow, the temperature of the flow near the
wall is no longer equal to the wall temperature and the veloc-
ity of the flow near the wall is no longer zero. The temperature
and velocity of the flow at the bottom wall are given by Barron
et al. [7], as
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Ts = Tw + 2R

1 + R

λmfp

Pr

∂T

∂η

∣∣∣∣
η=0

(1)

us = λmfp
∂u

∂η

∣∣∣∣
η=0

(2)

The relations above are used to calculate local temperature
jump and slip velocity at solid walls. The local values averaged
over the heated perimeter of the microchannel are then used in
Nusselt number calculation. Since the study mainly aims to in-
vestigate the effect of different thermal versions, the tangential
momentum accommodation coefficient and the thermal accom-
modation coefficient are not included in the equations above.
In any case, for most engineering applications, values for the
accommodation coefficients are near unity.

The flow is governed by the Navier–Stokes equations if the
continuum condition (very low Knudsen number, Kn < 0.001)

is satisfied. The continuum form of flow does not exist in a mi-
crochannel under slip flow. Therefore the slip flow solution by
using the Navier–Stokes equations may result in no negligi-
ble deviations in the hydrodynamic and thermal properties of
the flow. However, the general belief of the investigators is that
the Navier–Stokes equations may be used for slip flow solution
with high accuracy provided the boundary conditions are mod-
ified according to the slip flow characteristics. Modification of
the boundary conditions (nonzero flow velocity and tempera-
ture jump at the boundaries) removes the error raised by not
properly usage of the Navier–Stokes equations in slip flow so-
lution.

The H1 boundary condition can be applied to a rectangular
microchannel in eight different versions that are obtained by
different combinations of heated (at constant temperature) and
adiabatic walls. In Refs. [1,2], these versions are given as

4 version: Four walls are heated.
3L version: Three walls are heated, one short wall is adiabatic.
3S version: Three walls are heated, one long wall is adiabatic.
2L version: Two walls are heated, two short walls are adia-

batic.
2S version: Two walls are heated, two long walls are adiabatic.
2C version: One short and one long wall are heated, the other

two walls are adiabatic.
1L version: One long wall is heated, the other three walls are

adiabatic.
1S version: One short wall is heated, the other three walls are

adiabatic.

The slip flow in a microchannel with eight different H1
thermal versions above will be solved by applying the Navier–
Stokes equations and modified boundary conditions.

3. Momentum equation

The ζ -direction momentum equation for a hydrodynami-
cally developed flow is

∂2u

2
+ ∂2u

2
= 1 ∂p

(3)

∂ξ ∂η μ ∂ζ
The modified hydrodynamic boundary conditions according
to the slip flow assumption are

u = us at ξ = 0, ξ = a, η = 0, η = b (4)

The momentum equation and the modified boundary con-
ditions are nondimensionalized by introducing the following
nondimensional variables

x = ξ

a
, 0 � x � 1, (5)

y = η

a
, 0 � y � γ ≡ b

a
(6)

�
u(x, y) = u(ξ, η)

um

(7)

where um represents the mean fluid velocity, which is defined
as

um = 1

ab

b∫
0

a∫
0

u(ξ, η) dξ dη (8)

The nondimensional momentum equation and associated
boundary conditions are found as

∂2�
u

∂x2
+ ∂2�

u

∂y2
= P (9)

�
u = �

us at x = 0, x = 1, y = 0, y = γ (10)

where the normalized pressure gradient P is defined as

P = a2

umμ

∂p

∂ζ
(11)

The nondimensional momentum equation contains four
nonhomogeneous boundary conditions. The nonhomogeneous
boundary conditions in y-direction are homogenized by means
of a change of dependent variable defined as

v(x, y) = �
u(x, y) − �

uy(y) (12)

where the auxiliary one direction �
uy(y) function satisfies the

following differential equation and the same boundary condi-
tions for the nondimensional momentum equation at y = 0 and
y = γ

d2�
uy

dy2
− �

uy = 0 (13)

�
uy = �

us at y = 0, y = γ (14)

The solution of system above is found as

�
uy =

�
us

1 + eγ

(
ey + eγ−y

)
(15)

By applying the change of dependent variable as defined
above the governing nondimensional momentum equation and
associated boundary conditions take the following form.

∂2v

∂x2
+ ∂2v

∂y2
= P −

�
us

1 + eγ

(
ey + eγ−y

)
(16)

v = �
us − �

uy at x = 0, x = 1 (17)

v = 0 at y = 0, y = γ (18)
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The system above will be solved by applying integral
transform method. Application of integral transform together
with homogenized boundary conditions will reduce the two-
dimensional momentum equation above to a one-dimensional
(ordinary) differential equation the solution of which may eas-
ily be obtained.

4. Solution of the momentum equation

The integral transform and inversion formula to be used are
Integral transform

v̄(μn, x) =
γ∫

0

K(μn,y)v(x, y) dy (19)

Inversion formula

v(x, y) =
∞∑

n=1

K(μn,y)v̄(μn, x) (20)

where the Kernels K(μn,y) and the eigenvalues μn are the
same as those used in heat conduction problems. Ozisik [8] pro-
poses the following Kernels and eigenvalues for the boundary
conditions of the first kind both at y = 0 and y = γ in the solu-
tion of heat conduction problems by integral transform method.

K(μn,y) =
√

2

γ
sinμny (21)

sinμnγ = 0, or, μn = nπ

γ
n = 1,2,3, . . . (22)

Interested readers may refer to the books [9–12] for details
on the application of integral transforms in solution of heat and
fluid flow problems. We will start the transformation by mul-
tiplying both sides of the nondimensional momentum equation
(Eq. (16)) by K(μn,y) and integrating over the y axis,

γ∫
0

K(μn,y)
∂2v

∂x2
dy +

γ∫
0

K(μn,y)
∂2v

∂y2
dy

=
γ∫

0

K(μn,y)P dy −
γ∫

0

K(μn,y)

�
us

1 + eγ

(
ey + eγ−y

)
dy

(23)

Evaluation of the four integrals changes this equation to

∂2v̄(μn, x)

∂x2
− μ2

nv̄(μn, x) = An (24)

where

An =
√

2

γ

En

μn

(
P −

�
usμ

2
n

1 + μ2
n

)
(25)

En = −(−1)n + 1 (26)

The boundary conditions at x = 0 and x = 1 are also trans-
formed as
v̄(μn,0) =
γ∫

0

K(μn,y)v(0, y) dy =
√

2

γ

�
usEn

μn(1 + μ2
n)

(27)

v̄(μn,1) =
γ∫

0

K(μn,y)v(1, y) dy =
√

2

γ

�
usEn

μn(1 + μ2
n)

(28)

The transformed form of the momentum equation, Eq. (24),
is an ordinary differential equation the solution of which ac-
cording to the boundary conditions, Eqs. (27) and (28), is

v̄(μn, x) = b1,ne
μnx + b2,ne

−μnx − b3,n (29)

where

b1,n = Bn

−e−μn + 1

eμn − e−μn
(30)

b2,n = Bn

eμn − 1

eμn − e−μn
(31)

b3,n = An

μ2
n

(32)

Bn =
√

2

γ

PEn

μ3
n

(33)

Applying the inversion formula results in

v(x, y) =
∞∑

n=1

K(μn,y)
(
b1,ne

μnx + b2,ne
−μnx − b3,n

)
(34)

Finally, the nondimensional velocity distribution is found by
substituting Eqs. (15) and (34) into Eq. (12) as

�
u(x, y) =

�
us

1 + eγ

(
ey + eγ−y

)
+

∞∑
n=1

K(μn,y)
(
b1,ne

μnx + b2,ne
−μnx − b3,n

)
(35)

The velocity distribution found above provides a possibility
to determine the nondimensional slip velocity �

us and the nor-
malized pressure gradient P , which are still unknowns.

Eqs. (2) and (8) may be written in terms of nondimensional
variables, respectively, as

�
us = Kn

∂
�
u(x, y)

∂y

∣∣∣∣
y=0

(36)

1 = 1

γ

γ∫
0

1∫
0

�
u(x, y) dx dy (37)

where the Knudsen number Kn is defined as

Kn = λmfp

Dh

(38)

Importing Eq. (35) into Eqs. (36) and (37) and solving si-
multaneously for the nondimensional slip velocity �

us and the
normalized pressure gradient P result in

�
us = S3

S1

γ

2[ 1+γ
2γKn

− 1−eγ

1+eγ (1 + S3
S1

) − 4
γ
S2(

S4
S2

− S3
S1

)] (39)

P = 1
{
γ 2 − �

us

[
2(eγ − 1)γ

γ
+ 8S2

]}
(40)
8S1 1 + e
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where

S1 =
∞∑

n=1

2 tanhμ2n−1/2 − μ2n−1

μ5
2n−1

(41)

S2 =
∞∑

n=1

1

μ2
2n−1(1 + μ2

2n−1)
(42)

S3 =
∞∑

n=1

2 tanhμ2n−1/2 − μ2n−1

μ3
2n−1

(43)

S4 =
∞∑

n=1

1

1 + μ2
2n−1

(44)

Note that Eq. (36) gives the local nondimensional slip veloc-
ity along the long wall of microchannel. The nondimensional
slip velocity �

us found above is the average of local values along
the long wall. Determination of the nondimensional slip veloc-
ity �

us and the normalized pressure gradient P completes the
solution of momentum equation.

The velocity distribution given by Eq. (35), which is ob-
tained by applying the integral transform in y-direction, will be
employed in derivation of temperature distribution. However,
for some of the eight thermal versions, employing the veloc-
ity distribution obtained by applying the integral transform in
x-direction will highly simplify the mathematical process in
derivation of the temperature distribution.

By applying the integral transform in x-direction with ho-
mogenized boundary conditions in the same direction, the ve-
locity distribution is obtained as

�
u(x, y) =

�
us

1 + e

(
ex + e1−x

)
+

∞∑
n=1

K(μn,x)
(
b1,ne

μny + b2,ne
−μny − b3,n

)
(45)

where

K(μn,x) = √
2 sinμnx (46)

sinμn = 0, or, μn = nπ n = 1,2,3, . . . (47)

An = √
2
En

μn

(
P −

�
usμ

2
n

1 + μ2
n

)
(48)

Bn = √
2
PEn

μ3
n

(49)

b1,n = Bn

−e−μnγ + 1

eμnγ − e−μnγ
(50)

b2,n = Bn

eμnγ − 1

eμnγ − e−μnγ
(51)

b3,n = An

μ2
n

(52)

5. Energy equation

The energy equation for a thermally developed flow is

∂2T

2
+ ∂2T

2
= u(ξ, η) ∂T

(53)

∂ξ ∂η α ∂ζ
The axial variation of fluid temperature is approximated in
the following form by providing an energy balance for an arbi-
trary differential dζ segment of the microchannel.

∂T

∂ζ
= q ′

ρcP umab
(54)

where q ′ represents the thermal power per unit length imposed
on the heated walls of the microchannel.

The energy equation is nondimensionalized by making use
of the nondimensional variables defined by Eqs. (5)–(7) and the
nondimensional temperature defined as

�
T = T − T0

(q ′/k)
(55)

The nondimensional energy equation is found as

∂2�
T

∂x2
+ ∂2�

T

∂y2
=

�
u(x, y)

γ
(56)

6. Thermal boundary conditions

The walls of the microchannel are either adiabatic or heated
at a constant temperature Tw . Since the problem under consider-
ation is a slip flow, this statement may be written more precisely
as; for the fluid at the vicinity of solid walls, either the tem-
perature gradient is zero, or, the temperature is equal to slip
temperature Ts that has a finite difference with the wall temper-
ature Tw . Combinations of the adiabatic and heated walls form
the eight versions of the thermal boundary conditions. The ther-
mal boundary conditions for any version may be given in the
following form in general. The coefficients di equal 1 for non-
adiabatic walls and 0 for adiabatic walls. Various combinations
of these numerical values associated with each of the eight ther-
mal versions are given in Table 1.[
d1T (ξ, η) + d2

∂T (ξ, η)

∂ξ

]
ξ=0

= d3Ts (57)

[
d4T (ξ, η) + d5

∂T (ξ, η)

∂ξ

]
ξ=a

= d6Ts (58)

[
d7T (ξ, η) + d8

∂T (ξ, η)

∂η

]
η=0

= d9Ts (59)

[
d10T (ξ, η) + d11

∂T (ξ, η)

∂η

]
η=b

= d12Ts (60)

Table 1
Numeric values of the coefficients di for determining the thermal boundary
conditions in various combinations of heated and adiabatic walls

Version d1 d2 d3 d4 d5 d6 d7 d8 d9 d10 d11 d12

1L 0 1 0 0 1 0 1 0 1 0 1 0
1S 1 0 1 0 1 0 0 1 0 0 1 0
2L 0 1 0 0 1 0 1 0 1 1 0 1
2S 1 0 1 1 0 1 0 1 0 0 1 0
2C 1 0 1 0 1 0 1 0 1 0 1 0
3L 1 0 1 0 1 0 1 0 1 1 0 1
3S 1 0 1 1 0 1 1 0 1 0 1 0
4 1 0 1 1 0 1 1 0 1 1 0 1
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The general form of the thermal boundary conditions may
be nondimensionalized as[
d1

�
T (x, y) + d2

∂
�
T (x, y)

∂x

]
x=0

= d3
�
T s (61)

[
d4

�
T (x, y) + d5

∂
�
T (x, y)

∂x

]
x=1

= d6
�
T s (62)

[
d7

�
T (x, y) + d8

∂
�
T (x, y)

∂y

]
y=0

= d9
�
T s (63)

[
d10

�
T (x, y) + d11

∂
�
T (x, y)

∂y

]
y=γ

= d12
�
T s (64)

7. Solution of the energy equation

Some of the thermal boundary conditions (at least one) for
any of the eight versions are nonhomogeneous. The nonho-
mogeneous boundary conditions in the x or y directions are
homogenized by means of a change of dependent variable de-
fined, respectively, as

θ(x, y) = �
T (x, y) − �

T x(x) (65)

θ(x, y) = �
T (x, y) − �

T y(y) (66)

where the auxiliary one direction
�
T x(x) and

�
T y(y) functions

satisfy the following differential equations and the same bound-
ary conditions at x = 0, x = 1 (Eqs. (61) and (62)) and y = 0,
y = γ (Eqs. (63) and (64)), respectively.

d2�
T x

dx2
− �

T x = 0 (67)

d2�
T y

dy2
− �

T y = 0 (68)

In this paper, the nonhomogeneity is removed in x direction
for the 1S, 2S and 3S versions and in y direction for the others.
According to this solution policy, the auxiliary functions are
determined as

�
T x =

�
T s

e + e−1

(
ex−1 + e1−x

)
for 1S version (69)

�
T x =

�
T s

1 + e

(
ex + e1−x

)
for 2S and 3S versions (70)

�
T y =

�
T s

eγ + e−γ

(
ey−γ + eγ−y

)
for 1L and 2C versions (71)

�
T y =

�
T s

1 + eγ

(
ey + eγ−y

)
for 4, 2L and 3L versions (72)

By applying the change of dependent variable as defined
above the nondimensional energy equation (Eq. (56)) and asso-
ciated boundary conditions (Eqs. (61)–(64)) take the following
form, respectively.

∂2θ

2
+ ∂2θ

2
=

�
u(x, y) − �

T aux (73)

∂x ∂y γ
[
d1θ(x, y) + d2

∂θ(x, y)

∂x

]
x=0

= d3
�
T s −

[
d1

�
T aux + d2

d
�
T aux

dx

]
x=0

(74)[
d4θ(x, y) + d5

∂θ(x, y)

∂x

]
x=1

= d6
�
T s −

[
d4

�
T aux + d5

d
�
T aux

dx

]
x=1

(75)[
d7θ(x, y) + d8

∂θ(x, y)

∂y

]
y=0

= d9
�
T s −

[
d7

�
T aux + d8

d
�
T aux

dy

]
y=0

(76)

[
d10θ(x, y) + d11

∂θ(x, y)

∂y

]
y=γ

= d12
�
T s −

[
d10

�
T aux + d11

d
�
T aux

dy

]
y=γ

(77)

where the auxiliary function
�
T aux is given by either of the

Eqs. (69)–(72), depending on the thermal version being solved.
It is notable that the right sides of the homogenized boundary
conditions given above vanish either in x or in y direction. That
is, the boundary conditions either in x or in y direction are ho-
mogeneous. The right sides of Eqs. (74) and (75) are equal to
zero for the 1S, 2S and 3S versions, and the right sides of the
Eqs. (76) and (77) are equal to zero for all the other versions.

The solution of energy equation coupled with the boundary
conditions given above is sought.

Integral transform method, either in x or in y direction, is ap-
plied to solve the energy equation. The integral transform and
inversion formula in x and y directions to be used in the solu-
tion of energy equation are:

Integral transform (in x direction)

θ̄ (λn, y) =
1∫

0

K(λn, x)θ(x, y) dx (78)

Inversion formula (in x direction)

θ(x, y) =
∞∑

n=1

K(λn, x)θ̄(λn, y) (79)

Integral transform (in y direction)

θ̄ (λn, x) =
γ∫

0

K(λn, y)θ(x, y) dy (80)

Inversion formula (in y direction)

θ(x, y) =
∞∑

n=1

K(λn, y)θ̄(λn, x) (81)

where the Kernels K(λn, x), K(λn, y) and the eigenvalues λn

are the same as those used in heat conduction problems. These
are determined according to the combination of the boundary
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Table 2
The Kernels and the eigenvalues used in transformation of the energy equation
for the eight thermal versions

Version K(λn, x) K(λn, y) λn

1L –
√

2/γ sinλny (2n − 1)π/(2γ )

1S
√

2 sinλnx – (2n − 1)π/2
2L –

√
2/γ sinλny nπ/γ

2S
√

2 sinλnx – nπ

2C –
√

2/γ sinλny (2n − 1)π/(2γ )

3L –
√

2/γ sinλny nπ/γ

3S
√

2 sinλnx – nπ

4 –
√

2/γ sinλny nπ/γ

n = 1,2,3, . . .

conditions in the transformation direction. Ozisik [8] has tabu-
lated the Kernels and eigenvalues for all possible combinations
of the homogeneous boundary conditions of the first kind (zero
temperature at the boundary) and second kind (adiabatic bound-
ary). The Kernels and the eigenvalues to be used for the eight
thermal versions, proposed by Ozisik [8], are given in Table 2.

Similar to the case of momentum equation, the transfor-
mation starts by multiplying both sides of the nondimensional
energy equation (Eq. (73)) by K(λn, x) or K(λn, y) and inte-
grating over the x or y axis. The transformation results in a
second order ordinary differential equation with a single space
variable for each of the thermal versions as

∂2θ̄ (λn, y)

∂y2
− λ2

nθ̄(λn, y) = C1n + 1

γ

(
b1,ne

μny + b2,ne
−μny

)
for 2S and 3S versions (82)

∂2θ̄ (λn, x)

∂x2
− λ2

nθ̄(λn, x) = C2n + 1

γ

(
b1,ne

μnx + b2,ne
−μnx

)
for 2L, 3L and 4 versions (83)

∂2θ̄ (λn, x)

∂x2
− λ2

nθ̄(λn, x)

= C3n +
∞∑

m=1

C3mn

(
b1,meμmx + b2,me−μmx

)
for 1L and 2C versions (84)

∂2θ̄ (λn, y)

∂y2
− λ2

nθ̄(λn, y)

= C4n +
∞∑

m=1

C4mn

(
b1,meμmy + b2,me−μmy

)
for 1S version (85)

where

C1n = √
2

λnEn

1 + λ2
n

(�
us

γ
− �

T s

)
− b3,n

γ
(86)

C2n =
√

2

γ

λnEn

1 + λ2
n

(�
us

γ
− �

T s

)
− b3,n

γ
(87)

C3n =
√

2

γ

1

γ

�
us

1 + eγ

1

1 + λ2
n

[(
eγ − 1

)
(−1)n−1 + (

eγ + 1
)
λn

]

− 2

γ

1

γ

∞∑
(b3,mImn) −

√
2

γ

�
T sλn

1 + λ2
n

(88)

m=1
C4n = √
2

1

γ

�
us

1 + e

1

1 + λ2
n

[
(e − 1)(−1)n−1 + (e + 1)λn

]

− 2
1

γ

∞∑
m=1

(b3,mImn) − √
2

�
T sλn

1 + λ2
n

(89)

C3mn = 2

γ

Imn

γ
(90)

C4mn = 2
Imn

γ
(91)

Imn = 1

2
(−1)m+n

[
1

(μm − λn)
+ 1

(μm + λn)

]
(92)

A couple of the boundary conditions (Eqs. (74)–(77)) are
used in the transformation process. Another couple that is not
used is transformed in a similar manner as above and the ordi-
nary differential equations are solved satisfying the transformed
boundary conditions. The solution for each of the eight thermal
versions are found as

θ̄2S(λn, y) = c1,1e
λny + c1,2e

−λny + c1,3yeλny

+ c1,4ye−λny − c1,5 (93)

θ̄3S(λn, y) = c2,1e
λny + c2,2e

−λny + c2,3yeλny

+ c2,4ye−λny − c2,5 (94)

θ̄2L(λn, x) = c3,1e
λnx + c3,2e

−λnx + c3,3xeλnx

+ c3,4xe−λnx − c3,5 (95)

θ̄3L(λn, x) = c4,1e
λnx + c4,2e

−λnx + c4,3xeλnx

+ c4,4xe−λnx − c4,5 (96)

θ̄4(λn, x) = c5,1e
λnx + c5,2e

−λnx + c5,3xeλnx

+ c5,4xe−λnx − c5,5 (97)

θ̄1L(λn, x) = c6,1e
λnx + c6,2e

−λnx

+
∞∑

m=1

(
c6,3e

μmx + c6,4e
−μmx

) − c6,5 (98)

θ̄2C(λn, x) = c7,1e
λnx + c7,2e

−λnx

+
∞∑

m=1

(
c7,3e

μmx + c7,4e
−μmx

) − c7,5 (99)

θ̄1S(λn, y) = c8,1e
λny + c8,2e

−λny

+
∞∑

m=1

(
c8,3e

μmy + c8,4e
−μmy

) − c8,5 (100)

The constant coefficients ci,j in the transformed functions
above are given in Appendix A.

Applying the inversion formula for each of the transformed
functions above and adding the appropriate auxiliary function
result in the nondimensional temperature distribution as

�
T 2S(x, y) =

�
T s

1 + e

(
ex + e1−x

)

+
∞∑

K2S(λn, x)θ̄2S(λn, y) (101)

n=1
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�
T 3S(x, y) =

�
T s

1 + e

(
ex + e1−x

)
+

∞∑
n=1

K3S(λn, x)θ̄3S(λn, y) (102)

�
T 2L(x, y) =

�
T s

1 + eγ

(
ey + eγ−y

)
+

∞∑
n=1

K2L(λn, y)θ̄2L(λn, x) (103)

�
T 3L(x, y) =

�
T s

1 + eγ

(
ey + eγ−y

)
+

∞∑
n=1

K3L(λn, y)θ̄3L(λn, x) (104)

�
T 4(x, y) =

�
T s

1 + eγ

(
ey + eγ−y

)
+

∞∑
n=1

K4(λn, y)θ̄4(λn, x) (105)

�
T 1L(x, y) =

�
T s

eγ + e−γ

(
ey−γ + eγ−y

)
+

∞∑
n=1

K1L(λn, y)θ̄1L(λn, x) (106)

�
T 2C(x, y) =

�
T s

eγ + e−γ

(
ey−γ + eγ−y

)
+

∞∑
n=1

K2C(λn, y)θ̄2C(λn, x) (107)

�
T 1S(x, y) =

�
T s

e + e−1

(
ex−1 + e1−x

)
+

∞∑
n=1

K1S(λn, x)θ̄1S(λn, y) (108)

The only unknown, nondimensional slip temperature
�
T s ,

may now be determined by nondimensionalizing Eq. (1) and
adapting for the walls, which give the local nondimensional slip
temperature at the walls as

�
T s(x,0) = �

T w + 2R

1 + R

Kn

Pr

2γ

1 + γ

∂
�
T

∂y

∣∣∣∣
y=0

�
T s(x, γ ) = �

T w − 2R

1 + R

Kn

Pr

2γ

1 + γ

∂
�
T

∂y

∣∣∣∣
y=γ

�
T s(0, y) = �

T w + 2R

1 + R

Kn

Pr

2γ

1 + γ

∂
�
T

∂x

∣∣∣∣
x=0

�
T s(1, y) = �

T w − 2R

1 + R

Kn

Pr

2γ

1 + γ

∂
�
T

∂x

∣∣∣∣
x=1

(109)

Integrating the local nondimensional slip temperatures along
the heated walls, and averaging over the nondimensional heated
perimeter of microchannel gives the average nondimensional
slip temperature

�
T s as
�
T s =

[ d7∫
0

�
T s(x,0) dx +

d10∫
0

�
T s(x, γ ) dx

+
d1γ∫
0

�
T s(0, y) dy +

d4γ∫
0

�
T s(1, y) dy

]
�
L

−1
h (110)

where the nondimensional heated perimeter of microchannel
L̂h for the eight thermal versions is calculated from

L̂h = Lh/a = d7 + d10 + d1γ + d4γ (111)

Since partial derivative of the temperature with respect to
x or y involves

�
T s term, the equation above is implicit in

�
T s . Evaluating the integrals above and solving for the average
nondimensional slip temperature

�
T s result in its explicit form.

With the nondimensional velocity and temperature distri-
butions and the nondimensional slip temperature known, the
Nusselt number may now be determined. An energy balance
on the heated perimeter at a specified ζ -cross section of mi-
crochannel leads to

q ′dζ = hLh dζ (Tw − Tb) (112)

where the bulk or average nondimensional temperature
�
T b is

defined as

�
T b = 1

γ

γ∫
0

1∫
0

�
u(x, y)

�
T (x, y) dx dy (113)

The Nusselt number is calculated by

Nu = hDh

k
(114)

By combining Eq. (112) with Eq. (114) and after some ma-
nipulation the Nusselt number is found as

Nu = 2γ

1 + γ

1
�
Lh

1
�
T w − �

T b

(115)

8. Results and discussion

All the numerical calculations are done using Mathematica 5
package for

�
T w = 0, Pr = 0.6 and R = 1.4. A sensitivity analy-

sis on the number of terms in the infinite series is carried out to
determine the required number of terms to be included in the
infinite series to maintain a desired convergence and accuracy
level. A typical Nusselt number calculation with varying num-
ber of terms in the infinite series for the 4 Version at Kn = 0.04
and γ = 0.8 is given in Fig. 2. The figure shows that the effect
of the terms decreases rapidly and, disappears practically for
the terms with n > 100. The accuracy of the calculated Nusselt
number, which is defined as the percentage of deviation from
the converged value, for the number of terms equal to 100, 200
and 500 is as low as 0.025%, 0.013% and 0.006%, respectively.
This allows calculating the infinite series with a relatively low
number of terms (a few hundred terms) to provide the desired
convergence and accuracy level. The very fast convergence of
the series in the functions for velocity and temperature distrib-
utions makes the computer program time efficient.
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Fig. 2. Calculated Nusselt numbers with varying number of terms in the infinite
series for the 4 version at Kn = 0.04 and γ = 0.8.

Table 3
Nusselt numbers for the 4 version

γ = 1 γ = 0.8 γ = 0.6 γ = 0.4 γ = 0.2
Kn Nu Nu Nu Nu Nu

0.00 3.6080 3.6638 3.8946 4.4719 5.7377
0.02 3.3812 3.4369 3.6337 4.0926 5.0087
0.04 3.1301 3.1797 3.3406 3.6970 4.3597
0.06 2.8848 2.9271 3.0569 3.3337 3.8219
0.08 2.6582 2.6935 2.7983 3.0154 3.3835
0.10 2.4540 2.4835 2.5686 2.7412 3.0253

Table 4
Nusselt numbers for the 3L version

γ = 1 γ = 0.8 γ = 0.6 γ = 0.4 γ = 0.2
Kn Nu Nu Nu Nu Nu

0.00 3.5682 3.8358 4.2464 4.9233 6.1311
0.02 3.2994 3.5286 3.8692 4.3998 5.2601
0.04 3.0306 3.2219 3.4979 3.9079 4.5252
0.06 2.7812 2.9398 3.1629 3.4817 3.9353
0.08 2.5574 2.6891 2.8706 3.1219 3.4642
0.10 2.3592 2.4694 2.6186 2.8198 3.0847

The Nusselt numbers calculated for the eight thermal ver-
sions are given in Tables 3–10 as a function of aspect ratio γ and
Knudsen number Kn. The Nusselt numbers for non-slip flow in
macrochannels for all the eight thermal versions are determined
by setting Kn = 0. The first lines on the Tables 3–10 corre-
spond to this case. The Nusselt numbers for non-slip flow in
macrochannels found by Morini [1] and Shah and London [13]
are given in Tables 11 and 12, respectively. A comparison be-
tween the data on the first lines of the Tables 3–10 and the
data given in the Tables 11 and 12 shows that the Nusselt num-
bers found for non-slip flow in macrochannels in this paper are
in exact agreement with those of Morini [1] and good agree-
ment with those of Shah and London [13]. On the other hand,
Yu and Ameel [5] solved slip flow in microchannels for 4 ver-
sion for thermally developing flow. Since the results found by
Yu and Ameel [5] are given for thermally developing flow and
in graphical form, a precise comparison between the results is
not possible. However, a qualitative comparison shows that the
Table 5
Nusselt numbers for the 2L version

γ = 1 γ = 0.8 γ = 0.6 γ = 0.4 γ = 0.2
Kn Nu Nu Nu Nu Nu

0.00 4.0950 4.4717 4.9440 5.5924 6.6089
0.02 3.6802 3.9842 4.3585 4.8511 5.5596
0.04 3.3101 3.5536 3.8472 4.2194 4.7209
0.06 2.9906 3.1866 3.4185 3.7035 4.0691
0.08 2.7173 2.8769 3.0625 3.2849 3.5596
0.10 2.4838 2.6153 2.7661 2.9430 3.1553

Table 6
Nusselt numbers for the 1L version

γ = 1 γ = 0.8 γ = 0.6 γ = 0.4 γ = 0.2
Kn Nu Nu Nu Nu Nu

0.00 2.6855 2.9644 3.3086 3.7503 4.3784
0.02 2.4661 2.7003 2.9852 3.3432 3.8276
0.04 2.2723 2.4699 2.7066 2.9978 3.3766
0.06 2.1026 2.2704 2.4688 2.7083 3.0101
0.08 1.9539 2.0977 2.2656 2.4650 2.7100
0.10 1.8232 1.9476 2.0911 2.2592 2.4615

Table 7
Nusselt numbers for the 3S version

γ = 1 γ = 0.8 γ = 0.6 γ = 0.4 γ = 0.2
Kn Nu Nu Nu Nu Nu

0.00 3.5682 3.3553 3.1818 3.1631 3.6387
0.02 3.2994 3.1274 2.9836 2.9609 3.3183
0.04 3.0306 2.8905 2.7702 2.7444 3.0140
0.06 2.7812 2.6658 2.5642 2.5371 2.7433
0.08 2.5574 2.4611 2.3746 2.3474 2.5078
0.10 2.3592 2.2781 2.2037 2.1773 2.3043

Table 8
Nusselt numbers for the 2S version

γ = 1 γ = 0.8 γ = 0.6 γ = 0.4 γ = 0.2
Kn Nu Nu Nu Nu Nu

0.00 4.0950 3.7129 3.2260 2.5829 1.6586
0.02 3.6802 3.3800 2.9847 2.4382 1.6040
0.04 3.3102 3.0714 2.7485 2.2850 1.5396
0.06 2.9906 2.7979 2.5315 2.1369 1.4729
0.08 2.7174 2.5595 2.3372 1.9993 1.4073
0.10 2.4840 2.3527 2.1652 1.8736 1.3446

Nusselt numbers found for the 4 version at slip condition in this
paper (the data on Table 3) are in good agreement with those of
Yu and Ameel [5]. Note that the Nusselt numbers found for the
3L and 3S, 2L and 2S, 1L and 1S, versions are equal at γ = 1,
which is an expected situation. The numerical results also show
that, for a given aspect ratio and rarefaction, the heat transfer in
the 2L version is higher than that for all the other thermal ver-
sions. The highest heat transfer is achieved in the 2L version
with the smallest aspect ratio. For macrochannels under H1 [1]
or H2 [2] boundary conditions also, the highest heat transfer
is observed in the 2L version. This is justified by Spiga and
Morini [14] that among the eight thermal versions, as the as-
pect ratio approaches zero only the 2L version approaches the
slab geometry having the well-known Nusselt number as high
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Table 9
Nusselt numbers for the 1S version

γ = 1 γ = 0.8 γ = 0.6 γ = 0.4 γ = 0.2
Kn Nu Nu Nu Nu Nu

0.00 2.6855 2.4036 2.0476 1.5846 0.9511
0.02 2.4661 2.2286 1.9219 1.5106 0.9250
0.04 2.2723 2.0704 1.8046 1.4385 0.8980
0.06 2.1025 1.9293 1.6973 1.3703 0.8713
0.08 1.9538 1.8038 1.6000 1.3067 0.8453
0.10 1.8231 1.6922 1.5119 1.2476 0.8204

Table 10
Nusselt numbers for the 2C version

γ = 1 γ = 0.8 γ = 0.6 γ = 0.4 γ = 0.2
Kn Nu Nu Nu Nu Nu

0.00 2.8108 2.8405 2.9613 3.2563 3.9246
0.02 2.6066 2.6351 2.7407 2.9879 3.5115
0.04 2.4138 2.4395 2.5297 2.7350 3.1482
0.06 2.2383 2.2607 2.3375 2.5084 2.8393
0.08 2.0810 2.1004 2.1659 2.3092 2.5786
0.10 1.9407 1.9576 2.0137 2.135 2.3577

Table 11
Nusselt numbers for non-slip flow found by Morini [1]

Morini [1]

γ = 1 γ = 0.8 γ = 0.6 γ = 0.4 γ = 0.2
Nu Nu Nu Nu Nu

4 version 3.608 3.664 3.895 4.472 5.738
3L version 3.568 3.836 4.246 4.923 6.131
2L version 4.095 4.472 4.944 5.592 6.609
1L version 2.686 2.964 3.309 3.750 4.379
3S version 3.568 3.355 3.182 3.163 3.639
2S version 4.095 3.713 3.226 2.583 1.659
1S version 2.686 2.404 2.048 1.585 0.951
2C version 2.811 2.840 2.961 3.256 3.925

Table 12
Nusselt numbers for non-slip flow found by Shah and London [13]

Shah and London [13]

γ = 1 γ = 0.8 γ = 0.6 γ = 0.4 γ = 0.2
Nu Nu Nu Nu Nu

4 version 3.608 3.664 3.895 4.472 5.738
3L version 3.556 – – 4.885 6.072
2L version 4.094 – – 5.555 6.561
1L version 2.712 – – 3.777 4.411
3S version 3.556 – – 3.169 3.636
2S version 4.094 – – 2.598 1.664
1S version 2.712 – – 1.604 0.964
2C version 2.836 2.866 2.987 3.279 3.914

as 8.235. For each of the thermal versions, a Nusselt number
correlation in terms of aspect ratio and Knudsen number can be
given by making use of the numerical values on Tables 3–10 for
the purpose of practical usages.

The numerical data on Tables 3–10 shows that Nusselt num-
ber for a microchannel with any aspect ratio decreases as the
Knudsen number increases for all the thermal versions. This
means that, with no exception, rarefaction influences the heat
Fig. 3. Variation of Nusselt number with Knudsen number for the 4 version.

Fig. 4. Variation of Nusselt number with aspect ratio for the 2L version.

Fig. 5. Variation of Nusselt number with aspect ratio for the 2S version.

transfer in negative direction. The higher the rarefaction, the
lower the heat transfer. From geometrical point of view, this
simply means that as the characteristic size of a microchan-
nel decreases, the heat transfer decreases also. Typical variation
of heat transfer with rarefaction, for the 4 version, is given in
Fig. 3.
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Fig. 6. Temperature contours for the 3L thermal version for γ = 1 and γ = 0.6.

Fig. 7. Temperature contours for the 2C thermal version for γ = 1 and γ = 0.6.
The effect of aspect ratio on heat transfer is not similar to
that of the rarefaction. Heat transfer decreases for the 4, 3L,
2L, 1L and 2C versions and, increases for the 3S, 2S and 1S
versions, with increasing aspect ratio, with an exception for the
3S version at very low aspect ratios, that exhibits a decreasing
trend. In other words, the highest heat transfer for the 4, 3L,
2L, 1L and 2C versions is achieved at the lowest aspect ratio
while, the highest heat transfer for the 3S, 2S and 1S versions is
achieved at the highest aspect ratio (γ = 1). A typical variation
of the heat transfer with aspect ratio for the 2L and 2S versions
are given in Figs. 4 and 5, respectively. The figures show that the
rate of decrease or increase with aspect ratio slows down at high
rarefactions. This holds for all the thermal versions. Further, the
numerical data for the 4 and 2C versions shows that the change
in Nusselt number for different high aspect ratios is very small.
Therefore, the effect of aspect ratio on heat transfer for the 4
and 2C versions can be neglected at high aspect ratios with high
accuracy.

The temperature contours for the 3L and 2C thermal versions
are given in Figs. 6 and 7, respectively. The temperature con-
tours for each thermal version are plotted typically for aspect
ratios equal to 0.6 and 1. Note that the temperature contours
plotted in microchannels with aspect ratio equal to 1 for the
3L and 3S, 2L and 2S, 1L and 1S, versions are identical with
ninety degrees geometrical rotation, as expected. The figures
show that the hottest and coldest contour lines are located clos-
est and farthest to the heated walls, respectively. Finally, it is
notable that the numerical data of Tables 3–10 and the tempera-
ture contours may be used to determine the optimal geometrical
and operational conditions for a microchannel exposed to any
of the eight thermal versions.
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9. Conclusion

Thermal behavior of a hydrodynamically and thermally de-
veloped flow in rectangular microchannels is analyzed. The
continuum approach with the velocity slip and temperature
jump condition at the solid walls is applied to develop the
mathematical model of flow phenomenon in the rectangular
microchannel. A total of eight different thermal boundary con-
ditions that are formed of different combinations of heated (at
constant temperature) and adiabatic walls is considered. The so-
lution of mathematical model is achieved by applying integral
transform method to both the momentum and energy equa-
tions. The velocity and temperature distributions found by the
solution of the momentum and energy equations are used to
determine the average Nusselt number for all the eight ther-
mal versions. The solution method of the paper is validated for
all the eight thermal versions at non-slip flow condition, and
for a single thermal version (4 version) at slip flow condition.
The paper explores the effects of rarefaction and aspect ratio on
thermal character of flow in rectangular microchannels exposed
to the eight different thermal boundary conditions. The study
does not include the effect of tangential momentum accom-
modation coefficient and thermal accommodation coefficient.
Numerical results are obtained for the fixed values of physical
properties (Pr = 0.6, R = 1.4) and wall temperature (

�
T w = 0).

The results show that the highest heat transfer is achieved in the
microchannel with two heated long walls (at constant tempera-
ture) and two adiabatic short walls (2L version). The decreasing
effect of rarefaction on heat transfer in microchannels, for all
the thermal versions, is established. The higher the rarefaction,
the lower the heat transfer. The numerical results also show
that heat transfer for the eight thermal versions may increase,
decrease, or exhibit very small change with aspect ratio. In par-
ticular, heat transfer decreases for the 4, 3L, 2L, 1L and 2C
versions, and increases for the 3S, 2S and 1S versions with in-
creasing aspect ratio. The rate of change in heat transfer for the
4 and 2C versions at high aspect ratios is very small. Therefore,
the effect of aspect ratio on heat transfer for the 4 and 2C ver-
sions can be neglected at high aspect ratios with high accuracy.
The solution of the paper may be used to determine the opti-
mal geometrical and operational conditions for a microchannel
exposed to any of the eight thermal versions.

Appendix A

The constant coefficients ci,j in the transformed functions,
Eqs. (93)–(100), are given as

c1,1 = −c1,3

λn

− γ (c1,3e
λnγ − c1,4e

−λnγ )

eλnγ − e−λnγ
(A.1)

c1,2 = c1,4

λn

− γ (c1,3e
λnγ − c1,4e

−λnγ )

eλnγ − e−λnγ
(A.2)

c1,3 = c2,3 = c3,3 = c4,3 = c5,3 = b1,n

2γ λn

(A.3)

c1,4 = c2,4 = c3,4 = c4,4 = c5,4 = − b2,n (A.4)

2γ λn
c1,5 = c2,5 = C1n

λ2
n

(A.5)

c2,1 = D2,ne
−λnγ

(eλnγ + e−λnγ )

− c2,3e
λnγ (1 + λnγ ) + c2,4e

−λnγ (1 − λnγ )

λn(eλnγ + e−λnγ )
(A.6)

c2,2 = D2,ne
λnγ

(eλnγ + e−λnγ )

+ c2,3e
λnγ (1 + λnγ ) + c2,4e

−λnγ (1 − λnγ )

λn(eλnγ + e−λnγ )
(A.7)

D2,n = √
2

En

γλ3
n

(
�
us − P

λ2
n

)
(A.8)

c3,1 = −c3,3

λn

− c3,3e
λn − c3,4e

−λn

eλn − e−λn
(A.9)

c3,2 = c3,4

λn

− c3,3e
λn − c3,4e

−λn

eλn − e−λn
(A.10)

c3,5 = c4,5 = c5,5 = C2n

λ2
n

(A.11)

c4,1 = D4,ne
−λn

(eλn + e−λn)

− c4,3e
λn(1 + λn) + c4,4e

−λn(1 − λn)

λn(eλn + e−λn)
(A.12)

c4,2 = D4,ne
λn

(eλn + e−λn)

+ c4,3e
λn(1 + λn) + c4,4e

−λn(1 − λn)

λn(eλn + e−λn)
(A.13)

D4,n = D5,n =
√

2

γ

En

γ λ3
n

(
�
us − P

λ2
n

)
(A.14)

c5,1 = −D5,ne
−λn − c5,3e

λn − c5,4e
−λn + D5,n

eλn − e−λn
(A.15)

c5,2 = D5,ne
λn + c5,3e

λn + c5,4e
−λn − D5,n

eλn − e−λn
(A.16)

c6,1 = 1

λn(eλn − e−λn)

[
e−λn

∞∑
m=1

(c6,3μm − c6,4μm)

−
∞∑

m=1

(
c6,3μmeμm − c6,4μme−μm

)]
(A.17)

c6,2 = 1

λn(eλn − e−λn)

[
eλn

∞∑
m=1

(c6,3μm − c6,4μm)

−
∞∑

m=1

(
c6,3μmeμm − c6,4μme−μm

)]
(A.18)

c6,3 = c7,3 = C3mnb1,m

μ2
m − λ2

n

(A.19)

c6,4 = c7,4 = C3mnb2,m

μ2
m − λ2

n

(A.20)

c6,5 = c7,5 = C3n

2
(A.21)
λn
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c7,1 = e−λn

(eλn + e−λn)

[
D7,n −

∞∑
m=1

(c7,3 + c7,4)

]

− 1

λn(eλn + e−λn)

∞∑
m=1

μm

(
c7,3e

μm − c7,4e
−μm

)
(A.22)

c7,2 = eλn

(eλn + e−λn)

[
D7,n −

∞∑
m=1

(c7,3 + c7,4)

]

+ 1

λn(eλn + e−λn)

∞∑
m=1

μm

(
c7,3e

μm − c7,4e
−μm

)
(A.23)

D7,n =
√

2

γ

�
T s

λn(1 + λ2
n)

+ Cn

λ2
n

(A.24)

c8,1 = 1

λn(eλnγ − e−λnγ )

[
e−λnγ

∞∑
m=1

(c8,3μm − c8,4μm)

−
∞∑

m=1

(
c8,3μmeμmγ − c8,4μme−μmγ

)]
(A.25)

c8,2 = 1

λn(eλnγ − e−λnγ )

[
eλnγ

∞∑
m=1

(c8,3μm − c8,4μm)

−
∞∑

m=1

(
c8,3μmeμmγ − c8,4μme−μmγ

)]
(A.26)

c8,3 = C4mnb1,m

μ2
m − λ2

n

(A.27)

c8,4 = C4mnb2,m

μ2
m − λ2

n

(A.28)

c8,5 = C4n

λ2
n

(A.29)
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